
Bridging Unsupervised and Supervised Depth from Focus via All-in-Focus Supervision
Ning-Hsu Wang1,2 Ren Wang1 Yu-Lun Liu1 Yu-Hao Huang1 Yu-Lin Chang1 Chia-Ping Chen1 Kevin Jou1

1MediaTek Inc.  2National Tsing Hua University

Summary Overview 
We reach SOTA in depth from focus, and the contributions are:
• We outperform SOTA methods in various comparisons, and

also runs faster.
• Our method is the first that can learn depth estimation
unsupervisedly from only all-in-focus (AiF) images, and
perform favorably against SOTA methods.

• Our method allows test-time optimization on real-world data
to mitigate the domain gap, especially when ground truth
depth data are unavailable.

Separate Normalization
Experimental Results

arXiv Paper: https://arxiv.org/pdf/2108.10843.pdf
Github Code: https://github.com/albert100121/AiFDepthNet/

• Given a focal stack S, a 3D ConvNet
produces an attention map M shared
between depth and AiF estimation.

• With different normalization functions
𝜎 " and 𝜍 " , the attention map can be
further manipulated to generate either
depth or AiF results.

Limitation

An alignment process is need for out-of-alignment images.RGB VDFF PSPNet DDFF DefucsNet Ours (S) Ours (US) GT

The result from unsupervised learning performs
favorably againt the one trained with GT depth data.

After test-time optimization, our model produces better visual
results by closing the domain gap between training data and
test data. (* indicates test-time optimization)
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We adopt separate normalization functions for depth and AiF
estimation to pursue a proper distribution on the attention map 
for sparse focal stacks. 
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Test-time Optimization

Training Loss
We can train our network either supervisedly with GT depth
data, or unsupervisedly with AiF images as well as a
smoothness loss.
• 𝐿!"#$%&'!$( = 𝐿($#)* = 𝔼 𝐷 − 𝐷+) ,

• 𝐿"-!"#$%&'!$( = 𝐿.'/ + 𝛼𝐿!011)*, where 𝐿.'/ = 𝔼 𝐼 − 𝐼+) ,
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