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1. Datasets
Totally five datasets are used in the quantitative experiments and visual comparisons. We provide detailed descriptions in

the following sections, while the brief descriptions are summarized in the main paper.

1.1. Rendered Synthetic Datasets

(i) DefocusNet [6]. They create a synthetic dataset using Blender [2] and release 500 scenes, which consist of 400 training
scenes and 100 test scenes. For each scene, they release five RGB images per focal stack, five defocus maps, and one depth
image. The AiF images, however, haven’t been publicly released yet. Therefore, for this dataset, we can only train our model
supervisedly using the ground truth depth.

1.2. Synthetically Blurred Datasets from 4D Light Fields

(i) DDFF 12-Scene [3]. They use a light-field camera to capture 4D light-fields and then generate focal stacks with these
light-fields. Besides the light-field images, they also provide ground truth depth maps captured from an RGB-D sensor. There
are 6 scenes for training and 6 scenes for testing. Generated from 600 light-field images, they provide around 5000 focal stacks
for training and 1000 focal stacks for validation with a stack size of 10. Similar to the DefocusNet dataset [6], we cannot
apply our unsupervised learning on this dataset as ground truth AiF images are not provided. We use the same train/test split
setting as in DDFF 12-Scene and DefocusNet.

(ii) 4D Light Field Dataset [5]. We use the same data generation method and configuration as described in DDFF 12-
Scene [3], and the same train/test split setting for fair comparisons. The focus positions are within [−2.5 2.5] with a stack
size of 10. This dataset includes both AiF and disparity ground truth, which could be used for unsupervised and supervised
learning, respectively. For this reason, most of our ablation studies are conducted on this dataset. Note that we predict disparity
maps instead of depth maps on this dataset since the ground truth data are disparity maps.

1



Table 1: Ablation study on the uniformity of input stack samples. When the images of the input focal stack are sampled
uniformly, the quality of output disparity maps are better than the one with a random sampled stack.

Image index MAE↓ MSE↓ RMSE↓
1, 3, 5, 7, 9 0.1663 0.0952 0.2964
1, 2, 5, 6, 9 0.1811 0.1235 0.3374

Table 2: Ablation study on different input stack sizes between training and testing. The model trained with a fixed stack
size of 10 performs poorly with different stack sizes at testing. The model trained with the same input stack size as testing
performs the best. However, the model trained with arbitrary input stack sizes performs favorably against the ones trained with
the same stack size as testing data. This demonstrates the generalization ability of our method across different input stack sizes.

Test stack size (index)
Training stack size

Fixed 10 Arbitrary 2∼10 Same as testing
MAE↓ MSE↓ RMSE↓ MAE↓ MSE↓ RMSE↓ MAE↓ MSE↓ RMSE↓

3 (1, 5, 9) 0.7603 0.9566 0.9642 0.2703 0.1482 0.3842 0.2274 0.1551 0.3841
5 (1, 3, 5, 7, 9) 0.2770 0.1545 0.3795 0.1480 0.0681 0.2537 0.1663 0.0952 0.2964
9 (1, 2, ..., 9) 0.0912 0.0493 0.2083 0.1197 0.0616 0.2379 0.0953 0.0591 0.2236

Table 3: Ablation study on network architecture. The 3D convolution leads to better performance on disparity estimation
because of its ability to capture features for both spatial and stack dimensions. Although the design of attention does not
increase the performance explicitly, it bridges the tasks of depth estimation and AiF image reconstruction, and thus enables the
unsupervised learning for depth estimation.

Architecture Attention MAE↓ MSE↓ RMSE↓ absRel↓ sqrRel↓ BadPix(0.07)↓ Bumpiness↓ Secs.↓

3D ✓ 0.0788 0.0472 0.2014 0.9837 0.4905 0.1894 1.5776 0.0984
0.0851 0.0461 0.1984 1.0682 0.4709 0.2342 2.3168 0.077

2D ✓ 0.1070 0.0577 0.2259 1.2529 0.6129 0.3063 2.1435 0.0488
0.1179 0.0576 0.2291 1.2493 0.6086 0.4085 2.3168 0.0441

1.3. Synthetically Blurred Real Datasets from RGB Images and Ground Truth Depth

(i) Middlebury Stereo Datasets [8]. This dataset includes 15 real-world scenes with left/right image pairs and ground truth
disparity maps. We synthesize defocus images with the left RGB images and the disparity maps using the method in [1].
The focus positions are linearly sampled in the disparity range [10, 60] with a stack size of 15. Similar to 4D Light Field
Dataset [5], we predict disparity maps instead of depth maps on this dataset. We only use this dataset for testing because the
size of this dataset is not sufficiently large for training.

1.4. Real Datasets

(i) Mobile Depth [9]. The Mobile Depth dataset [9] captures multiple real-world focal stacks with a hand-held mobile
phone (Samsung Galaxy S3) and a hand-held camera (Nikon D80). Focal stacks from the mobile phone are captured during
auto focus processes with arbitrary stack sizes. The Nikon D80 is used due to the fact that the mobile phone does not allow
manual control on focus positions. This dataset respectively provides focal stacks before and after calibration alignment, as
well as AiF images stitched by a multi-labeled MRF. This real-world dataset is used for our qualitative evaluations.

2. Additional Evaluations
In this section, we show additional quantitative results for comparisons to the state-of-the-art method DefocusNet [6]. We

also provide additional ablation studies and qualitative results for more information.
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Figure 1: Visual comparison on different focal stack sizes. The quality of disparity map improves as the stack size increases.

2.1. Ablation Studies

Focal stack size. Table 2 shows the detailed ablation results on the effect of different input stack sizes between training and
testing. Fig. 1 shows the corresponding qualitative results.
Network Architecture. Table 3 shows the full metric version of Table 2 in the main paper.
Unsupervised learning using all-in-focus images. Table 4 is the full metric version of Table 3 in the main paper.
Uniformity of input stack samples. Table 1 ablates the uniformity of input focal stacks. When the images of the stack are
sampled uniformly, it retains the stack information and performs better than the one with a non-uniformly sampled stack.
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Figure 2: Visual comparison on different supervision settings. (a) Supervised learning. (b) Unsupervised learning (AiF
supervision) with a stack size = 10. (c) Unsupervised learning with a stack size = 37. (d) Unsupervised learning with a stack
size = 10 and the smoothness loss. (e) Unsupervised learning with a stack size = 37 and the smoothness loss. The results of
supervised learning with disparity maps as supervision are better than the ones from unsupervised learning. The disparity maps
from unsupervised learning always suffer from the quantization effect. By adding the smoothness loss, the disparity results of
unsupervised learning become locally smooth and perform favorably against the ones from supervised learning qualitatively.



Table 4: Ablation study on supervision. The results of supervised learning perform better than the ones from unsupervised
learning (AiF supervision). Unsupervised learning often generates disparity maps that suffer from the quantization effect and
lead to poor results. After adding the smoothness loss, the output disparity maps become locally smooth and perform better
quantitatively and qualitatively. See Fig. 2 for the visual comparison.

Supervised Stack size Lsmooth MSE↓ MAE↓ RMSE↓ absRel↓ sqrRel↓ BadPix↓ Bump.↓ Secs.↓
Yes 10 0.0472 0.0788 0.2014 0.9837 0.4905 0.1894 1.5776 0.0673
No 10 0.1174 0.2425 0.3401 1.9612 0.7882 0.7879 4.1254 0.0657
No 37 0.1039 0.2099 0.3202 1.7174 0.6648 0.6508 4.1827 0.0886
No 10 ✓ 0.0746 0.1671 0.2698 1.5957 0.6045 0.6610 2.5836 0.0509
No 37 ✓ 0.0584 0.1116 0.2311 1.0637 0.4676 0.2826 2.6989 0.0775

Table 5: Quantitative comparison on the DefocusNet [6] dataset. Please refer to Fig. 4 for the visual comparison.

Method MAE↓ MSE↓ RMSE↓ AbsRel↓ SqrRel↓ Sec↓
Ours 0.0549 0.0127 0.1043 11.1528 1.8668 0.018
DefocusNet [6] 0.0637 0.0175 0.1207 13.8610 3.3104 0.039

RGB Image Disparity VDFF [7] DDLF [4] PSP-LF [10] Lytro PSPNet [10] DDFF [4] Ours

Figure 3: Visual comparison on DDFF 12-Scene [3]. The other state-of-the-art methods often generate blurry disparity
boundaries. In contrast, our method restores fine details at disparity discontinuities.

2.2. Comparisons to the State-of-the-art Methods

Depth Results. We show detailed quantitative and qualitative comparisons on the DefocusNet [6] dataset with our supervised
model in Table 5 and Fig. 4, respectively. Fig. 3 is the corresponding qualitative results of Table 4 in the main paper. For the
Mobile Depth [9] dataset, we show extra depth qualitative results in Fig. 5.
AiF Results. Our model is able to output AiF images in both supervised and unsupervised settings. We show the qualitative
results of predicted AiF images as well as the error maps on 4D Light Field Dataset [5], Middlebury Stereo Datasets [8], and
the Mobile Depth [9] dataset since they all contain ground truth AiF images. As shown in Figs. 7–9, although the model trained
on ground truth depth provides visually pleasing AiF results, the model trained on ground truth AiF images outperforms the
aforementioned results.

3. Limitations
Our method assumes that the images of the focal stack are perfectly aligned to form a reasonable 4D attention map. Thus,

not considered are those factors that would bring about misalignment, e.g., focus breathing, camera motion, or object motion.
Fortunately, this problem could be eased through an alignment process. Fig. 10 shows an example to clarify our viewpoint.
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Figure 4: Visual comparison on the DefocusNet [6] dataset.
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Figure 5: Visual comparison on the Mobile Depth dataset [9].
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Figure 6: Visual comparison on Middlebury Stereo Datasets [8].
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Figure 7: Visual comparison for AiF image reconstruction on 4D Light Field Dataset [5].
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Figure 8: Visual comparison for AiF image reconstruction on the Mobile Depth dataset [9].
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Figure 9: Visual comparison for AiF image reconstruction on Middlebury Stereo Datasets [8].



RGB Image After Alignment w/. Focus Breathing w/. Focus Breathing + Camera Motion

Figure 10: Limitations of our method. Not considered in our method are those factors that would make the images of the
focal stack out of alignment. However, an alignment process could remedy the quality degradation that comes from focus
breathing w/. and w/o. camera motion for depth estimation on the Mobile Depth dataset [9].
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